Showing posts with label Wiring. Show all posts
Showing posts with label Wiring. Show all posts

2022-09-28

Wiring the Instruments on a Catalina 320

We are getting close to finishing the update to our wiring on our 1994 Catalina 320 Achernar. As the boat came, it had the original Raymarine depth, wind, speed, and autopilot devices at the binnacle. It also came with an approximately ten-year-old AIS, antenna splitter, AM/FM radio, and chart plotter, as well as an ancient VHF radio, and Garmin radar dome on the mast. The chart plotter supports NMEA 2000, but the AIS only supports NMEA 0183 (see the other posts we have done about these technologies). The NMEA 2000 network on the boat only had three drops: 12V in, a Garmin 17X GPS antenna, and the Garmin 4212 chart plotter. The chart plotter showed radar and GPS, but none of the info from the devices at the binnacle, nor the AIS info. The AIS broadcasted the info about the location of our boat, but didn't have any way to show the location of any other boats.

Our goals:

  • A VHF radio that supports DSC
  • A VHF remote handset accessible from the cockpit
  • A chart plotter showing depth, wind, speed, autopilot, and AIS info
  • Saillogger recording the info on our travels with a reliable Internet connection
  • Replace as few of the instruments and devices as possible

Eventually, we'd like to replace all the instruments and devices with state-of-the-art equipment. But this will take a considerable amount of time and we'd rather be out cruising.

Since the VHF radio didn't support DSC, that required a replacement. We consider DSC to be a critical safety system on the boat as it provides a panic button that alerts the Coast Guard to our exact location should we run into problems. We replaced the VHF with a new Standard Horizon GX6000 (in retrospect, we could have gone with a cheaper radio and still met our goals). We also acquired the RAM4 wired remote microphone. We considered the wireless remote microphone, but the reviews we read said that the wireless version was unreliable. Unfortunately, the squelch on the radio failed shortly after we installed it, causing the radio to blast static at full volume. We had to send it in for warranty repair, which required almost six weeks to turn around, plus the cost of shipping it to them.

We ran new wires between the "garage" (the large locker on the port side of the Catalina 320) and the panel to the right of the chart table in the cabin. The two wires we ran were a NMEA 2000 backbone cable and the cable to support the RAM4 microphone. There is a channel for wires that runs across the top behind the galley cabinets. We opened the panel on the right side of the top right cabinet that allowed a fish tape to be extended from the electrical panel, through the channel, to the garage. This made fishing the new cables relatively easy. There is lots of room for cables in the channel.

Wires run under the pedestal in the aft cabin

In the garage, we added two blocks that provide the connection of the NMEA 2000 backbone to the devices at the binnacle. The ST60+ depth, ST 30 wind, ST 30 speed, and ST4000+ autopilot were all connected to each other with a SeaTalk1 network. However, the network did not extend anywhere else. We ran a new SeaTalk1 cable from the garage to the port aft lazarette, then under the pedestal in the aft cabin and up the stanchion to the devices. This required taking off the cover from under the pedestal in the aft cabin, which was held in place with bunch of screws. We removed two cables that ran up to the instrument panel: an obsolete and unused depth cable and a power cable. This freed space inside the port-side stainless steel pedestal support stanchion. We pulled the SeaTalk1 cable by taping it to one of the cables we were removing. We had to cut the SeaTalk1 cable to pull it, then splice the cable back together because the cable end was too large to fit down the stanchion. Because the SeaTalk1 cable provides power, we no longer needed the separate power cable and removed it.

The SeaTalk1 cable is attached to a small block that just allows another SeaTalk1 cable to be plugged in. That then connects to the SeaTalk1 to SeaTalk NG Converter. This block converts SeaTalk1 to SeaTalk NG (which is the same protocol as NMEA 2000, but with proprietary connectors). This then has a cable that has a SeaTalk NG connector on one end and NMEA 2000 connector on the other. This connects to the NMEA 2000 backbone. As soon as this was connected, the chart plotter started showing wind speed, wind direction, and depth. This info was also passed to saillogger, so shows up on the monitor page.

Achernar Wiring Block Diagram

The other end of the NMEA 2000 backbone runs into the cabin. This is connected to the Standard Horizon GX6000 VHF. Although the radio has an AIS receiver (but not transmitter) built in, we are not using it, instead using the West Marine AIS 1000 transceiver that came with the boat. (For the last five years Standard Horizon has described a GX6500 model that has an AIS transceiver built in, but the rumor is they have had trouble getting it certified by the FCC.) While we could receive AIS on the GX6000 and transmit with the AIS 1000, we run into a little problem with the antenna.

On a sloop sail boat, you only have one mast, but you need two antennas: one for VHF transmissions and one for AIS transmissions. They need to be separated by several feet. On a power boat, you can just fix two antennas to the top of the cabin in different places. On a sail boat, the workaround is something called an antenna splitter. You put up one antenna, but plug the VHF and the AIS into the antenna splitter and connect that to the antenna. (It can also handle AM/FM.) VHF is considered a safety system. If you push the DSC panic button, you cannot have the AIS transmitting, so when the VHF is being used, the splitter gives it priority. But if you have two AIS units, you will need two splitters, which would theoretically work, but asking for trouble. (Why the GX6000 doesn't have an antenna splitter built-in is a mystery.)

Instead, we just ignored the fact that the radio has an AIS receiver and used the West Marine AIS 1000 transceiver that came with the boat. That came with its own can of worms, the first of which was that we changed the MMSI associated with the boat. The MMSI that came with the boat was likely issued by BoatUS or the US Power Squadron. These free numbers only work in the United States. We plan on going to Canada on our boat, so the MMSI needs to be issued by the FCC. An FCC MMSI (which you can identify because it ends in zero) is exchanged with other countries, including Canada. This allows you to push the DSC panic button in Canadian waters and the Canadian Coast Guard will come rescue you. We applied for and received our new MMSI.

However, the FCC does not let end users of electronic equipment arbitrarily change the MMSI on equipment. Our new radio lets you put the number in once, but you have to send it back to Standard Horizon to change it thereafter. Our West Marine AIS already had a MMSI inputted, so it could not be changed. We contacted West Marine, but of course they are not the manufacturer, no longer sell it, and don’t really support it any more. West Marine emailed back some minimally helpful information that eventually led to getting it changed.

The wiring in the garage. Not as beautiful as we would like, but better than it was.

The next challenge was that for the chart plotter to get the AIS info. We needed the AIS to be on the NMEA 2000 network. That is all well and good, except the AIS 1000 only does NMEA 0183. We bought a Digital Yachts iKonvert unit that converts 0183 to 2000. While relatively expensive, it still was much cheaper than buying a new NMEA 2000 compatible AIS transceiver. The iKonvert little box has a NMEA 0183 connector on one side and a NMEA 2000 connector on the other. There are also DIP switches that control what messages should get passed through and the speed of the connection, which we set to AIS and GPS transmitting at 38400 baud. As soon as it was connected, the AIS info from other boats started showing on the chart plotter. A friend confirmed that we were transmitting our location, but that was always working.

But then a new problem started happening: The chart plotter was getting GPS info unreliably. The AIS 1000 has its own GPS antenna, separate from the one on NMEA 2000 network. The iKonvert was passing GPS info through from the AIS 1000 to the NMEA 2000 network, and the Garmin 4212 chart plotter was prioritizing the AIS 1000 GPS info. For whatever reason, this info was coming through intermittently and causing an error. We finally found the setting in the chart plotter to prioritize the Garmin X17 GPS antenna, which solved the problem.

We mounted the external connection for the RAM4 microphone on the port side, just below the propane locker. The boat came with about an inch diameter of broken fiberglass at exactly this spot which needed to be repaired, so drilling it out solved two problems. The one drawback to this location is that the aft locker door will run into the microphone if it is fully opened. So we will be attaching a cable to limit the distance the door will open by a couple of inches.

The last thing we needed was for the Raspberry Pi that saillogger runs on to have a reliable Internet connection. For that we acquired a Galaxy pad A7 Lite with a SIM card from T-Mobile. This runs a wi-fi hotspot that the Pi connects to. The monthly cost is relatively cheap, and the device was free after paying tax and a connection charge.

All of the equipment is now connected and working. Our next step is to make it all pretty, but that’s a topic for another day.

2016-05-13

Steaming Light, Anchor Light, VHF Antenna, and Spinnaker Crane Project

One of our goals for this year is to get new wiring and accessories on the mast. The mast currently does not have an anchor light at the top. It's not strictly necessary for a boat our size, but we'd feel better not getting run into in the dark. The steaming light has also never worked, for reasons that we never debugged. The one time we were under power at dusk, Greg stood at the mast with a headlamp on! We also would like a deck light to see what we are doing on the deck at night.

Note: All photos in this article can be clicked to show detail.
Antenna hitting tree branch
New antenna needed!

We had purchased a windex wind indicator to put on the VHF antenna only to realize that our installed antenna was much too thick for it to go on. We debated what to do, but put off changing the antenna or getting a different mounting for the windex. Circumstances solved our problem! We broke the VHF antenna that came with the boat as we took the her out of the water at the end of last season. Right next to the launch was an overhanging branch from a tree. It wasn't there the year before and caught us unaware. The branch does not bother the power boats, but with our mast up as we pulled forward from the ramp, it bent the antenna just far enough to snap it. Thus, a new antenna was in order. The old one was not designed for sail boats, anyway, as sail boat antennas need to work correctly when the boat is heeled over.

Disclaimer: This shows what we did on our mast. However, we cannot guarantee that any of it will work on your boat and will not damage your boat. Follow these directions at your own risk.

We ordered a bunch of parts from Catalina Direct. Our boat is a 1985 Catalina 22, so different parts may be needed for other model years or if you have non-standard gear. You may find some of these items are cheaper from Amazon, through the links at the bottom of this post.

  • D2087 Mast Light Wiring Harness C-22
  • Z2019 Aqua Signal Steaming & Halogen Deck Light 82<->98
  • Z3519 LED Upgrade for Aqua Signal Steaming/ Deck Light Combo
  • D1157 Anchor Light Mast Mount Tube - C-22
  • Z2004 Anchor Navigation Light 82<->98
  • Z3028 LED Upgrade For White Navigation Light
  • Z2022 VHF Masthead Antenna
  • Z1798 Anchor Light Tube Installation Kit
  • D2085 Spinnaker Crane C-22
  • Z2029 Deck Connector 4 Pin Black Plastic
  • Z1805 Windex 15 antenna mount

We also bought some additional items from Fisheries Supply:

  • 45' RG-8x Marine Grade Coax
  • 12' 14/4 Marine Grade flat wire
  • Rubber grommets for 1/2" holes

Additional supplies came from our local hardware store, or were on hand:

  • 3 10' Lengths of 3/4" Schedule 40 Plumbing PVC
  • 2 PVC connectors
  • Can of PVC Cement
  • 50 3/16"x1/4" pop rivets (also called blind rivets)
    Pop Rivets
    Pop Rivets
  • Spool of 14 gauge bare solid copper wire
  • Roll of blue or green painter's tape
  • Plastic cable tie

Tools used on this project:

  • Hacksaw
  • Screw drivers
  • Side cutters
  • Wire stripper
  • Flashlight
  • Round file
  • Pop rivet tool
  • 50' Wire fish tape
  • Vise Grips
  • Needle nose pliers
  • Electric drill
  • 3/16" drill bit for metal and PVC
  • 1/2" drill bit for metal and PVC
  • Tapping tool handle
  • Center punch
  • Hammer
  • 30' Tape measure
  • Eye protection
  • Dry erase marker
  • Heat source (lighter or heat gun) for heat shrink

We bought the D2087 wiring harness for the lighting. It isn't strictly necessary, as you can buy the wiring separately. However, the harness is pre-cut to the right lengths, and has the heat-shrink already around the bottom joining the two runs together. It also comes with the grommets that goes into the mast to protect the wiring. In the harness, there is a 14AWG two wire run that goes to the anchor light at the top of the mast, and a 14AWG three wire run that goes to the steaming and deck light just above the spreader bars. We also bought 45 feet of marine grade RG-8x coax for new antenna wire. Marine grade wire is tinned to reduce corrosion.

We got LED replacement bulbs for the anchor light, steaming light, and deck light, as these consume much less power. The battery will last much longer with LED bulbs. We plan on using LED lights everywhere when we are done.

You will need at least two people to do the job. Frequently one is working at the end of the mast, while the other is in the middle. At times, a third person will be handy but not required.

When drilling holes in the mast, use the center punch and hammer to create a starting point, then drill slowly. The aluminum is easy to drill. Always use eye protection while drilling. After drilling use the round file to smooth any hole that will have wires run through it. We're assuming that this is done throughout the directions below.

Aluminum pop rivet are great for attaching items to the mast that will not be subjected to a lot of stress. If you make a mistake or do not like how the item fits, just simply drill them out and try again.

The description below shows what we think will work best, given the hind sight of finishing this project. Some pictures may show tasks completed in a slightly different order than the description.

Prep Work

Mast on sawhorses
before removing furling jib


Coiled up standing rigging
  • Decide where you are going to store all the parts that will be removed that will need to go back on later.
  • Place the mast on sawhorses in a protected area. We used two sawhorses, plus a chair at times, because that's what we had, but later acquired a third sawhorse, as the mast flexed as we were working on it without center support.
  • Remove the furling jib by pulling the cotter pin at the head of the mast and set it aside.
  • Coil up the standing rigging and tape them out of the way with  painter's tape. Stepping on the rigging is a good way to put a hard kink into the cable, and you will be moving around the mast constantly. Best to get all that rigging safely stowed out of the way.
  • Remove the bolt holding the mast head in place and set the bolt, nut, and mast head aside.
  • Disconnect and pull the existing steaming light and VHF wiring. Set aside all old wiring to go to a metal recycling center, as copper is valuable.

The Conduit

When wires run up the mast, they should not be loose inside it. The existing antenna wiring had sponges placed around it every six feet or so to keep it from flopping around. We, instead, followed the recommendation to install conduit into the mast to run the wires through. The conduit runs on the inside front of the mast and is held in place by pop rivets. The PVC is about 6" shorter than the mast on both ends. The trick is getting the PVC conduit into the right place and riveting it. The instructions that came with the wiring harness recommend using a J shaped wire to hold the PVC to the front of the mast through one hole while pop-riveting another. After trying it, we discarded that idea as it did not really work. Instead we used 14 gauge bare solid copper wire as it had the right strength and flexibility.

Mark where you will
drill holes 2" apart
  • Construct a 24' run of PVC (for a 25' Catalina 22 mast) by gluing the PVC together with the connectors, then cutting it to length with the hacksaw. 
  • Mark spots in pairs approximately every four feet down the front of the mast with the dry erase marker, adjusting for hardware already on the mast. The pairs of holes are 2" apart.
  • Drill 3/16" holes where you have marked.
  • Cut six lengths of copper wire, each about two feet long.
  • Fold them in half, then push the V of the fold through the lower hole of each pair in the mast. When it hits the other side, it expands.
    Copper wire pushed
    through hole
  • Wrap the remainder around the outside of the mast and twist it together to keep it from getting knocked loose.
  • Run the PVC down the mast through the loops in the copper wire.
  • Make sure the PVC went through the loops at each copper wire by tugging on the wires, and viewing down the mast with the flashlight. The PVC should end about 6" from each end of the mast.
  • Pull all the copper wires tight and re-fasten them around the mast. This pulls the PVC to the front of the mast. You should see the PVC next to the holes all along the mast.

    PVC pulled up next to the hole,
    ready for drilling
    Copper wire wrapped
    around the mast
  • Working down the mast for each pair of holes:
    • Drill through the top hole of the pair through the side of the PVC.
      Drill the upper hole of the
      pair
    • Use the 3/16" x 1/4" pop rivet through the hole you just drilled to secure the PVC to the front of the mast.
      Putting the pop rivet in the
      upper hole of the pair
    • Use the side cutters to cut one side of the copper wire as close to the hole as possible.
    • With Vise Grips, pull the other side of the copper wire from the hole. In a few cases, the copper wire broke, but that will eventually come loose and shake down the mast.
    • Through the lower hole, drill a hole through the PVC
    • Pop-rivet the bottom hole to the mast.
    Note: Make absolutely sure that you have the first pop-rivet securing the PVC before cutting the copper wire at the other hole! We missed once and recovering took more than an hour of brain-storming, coat hangers, things being shoved down the mast to lever the PVC up, and other techniques that the copper wire avoided.

Running the Wires and Installing the Steaming Light

  • With the PVC in place, drill a 1/2" hole in the PVC where the steaming light was located, though the existing hole in the mast.
  • Run the fish tape down the PVC from the top of the mast
  • Tape the anchor light wire from the harness and the RG-8x coax to the fish tape.
    Wires attached to the fish tape
  • Put one wrap of painter's tape to hold the steaming light wire, which is shorter, to the other wires.
  • At the end of the steaming light wire, create a little pull of tape, which is easier to grab with the needle nose pliers than the wire itself.
  • Pull the wires up to the where the end of the steaming light wire is next to the hole and pull it out.
  • Place a rubber grommet into the wiring hole at the bottom of the mast.
  • Pull the end of the wiring harness though the hole.
  • Slip the heat shrink over the wires.
  • Strip the wires and fasten to Z2029 Deck Connector.
  • Make a diagram of which color wire is connected to each pin on the deck connector...you will need that later. This should go into your permanent records about your boat.
  • Carefully subject the heat shrink to heat until it is tight around the wires.
    Wiring harness routed
    at bottom of mast
  • At the steaming light, strip the outer wire insulation from the three wires back to the steaming light hole.
    Removing the outer insulation
    for the steaming/deck light
  • Put a rubber grommet into the hole.
    Wires routed for the
    steaming/deck light
    Inserting the grommet
  • Remove the gasket on the back of the steaming light, as there is not room to fit the wires through the hole otherwise.
  • Slip the three wires through hole at the back of the steaming light.
  • Drill two 3/16" holes in the side of the mast
  • Pop-riveted the steaming light into place.
    Pop rivet the steaming/deck light
    into place
  • Strip the wires.
  • Screw the wires to the screw posts for the steaming light, deck light, and ground. 
    Wires for the steaming light, deck
    light, and ground connected
  • Put the cover on the light.

Strain Relief

Now move to the top of the mast. There needs to be strain relief on the cables. This holds the cables on the top of the mast, so that the weight of the wires or a tug on the cable at the bottom of the mast does not pull the wires from their connections. There seems to be as many opinions on how to perform strain relief on wires as there are people making posts about it on the Internet. We decided to go with a cable tie that has a hole for a screw.

Cable tie with screw hole
Cable tie strain relief.
  • Drill a 3/16" hole in the side of the mast.
  • Bend the hole for the cable tie at 90 degrees.
  • Pop rivet the cable tie to the inside of the mast.
  • Put the cable tie around the wires and pull tight.
  • Cut the excess cable tie.

Spinnaker Crane

Last season we used the jib halyard for raising the spinnaker and gennaker. This worked, but ideally the spinnaker flies forward of the forestay, and can slide in response to the wind. When using the jib halyard, the top of the spinnaker chafes against the forestay. Adding a spinnaker crane, block, and halyard will put the spinnaker in the right place.

  • Pull the cotter pins for the rigging on the fore side of the mast head and discard.
  • Remove the clevis pins from the mast head.
  • Put the spinnaker crane in place.
  • Put the clevis pins that came with the spinnaker crane through the mast head.
  • Put the cotter coils for those pins in place.
  • Attach a block to the crane.
  • Run at least 50' of 1/4" or 3/8" line through the block

VHF Antenna

Our VHF antenna is mounted on the starboard side of the mast. We did a little work to make it fit on the side the mast, outside the shroud lines.

  • Drill a hole through the bracket for the antenna, which will accommodate the bolt that holds the mast head.
  • Drill two additional holes in the bottom of the bracket.
  • Drill two holes for the bracket for the antenna into the side of the mast.
  • Pop-rivet the two lower holes in bracket for the antenna to the side of the mast.
  • Drill a 1/2" hole in the mast for the wire to come through.
  • Place a grommet into the hole.
  • Attach the coax connector to the wire

Windex

The windex that we bought previously now went on the antenna. This is the scheme that worked.

  • Bend the reference angle for the windex to the right shape (about 60 degrees).
  • Slide the large washer on the antenna base.
  • Put the reference angle on the antenna base..
  • Mount the antenna on the antenna bracket.
  • Put the locking nut on the bottom of the antenna base.
  • Put a wrap of rigging tape around the antenna just above the anchor light.
  • Remove the end cap of the antenna.
  • Slide a Teflon washer over the antenna down to the rigging tape.
  • Slide the windex over the antenna.
  • Slide another Teflon washer over the antenna.
  • Put another wind of rigging tape around the antenna above the washer.

Anchor Light

The anchor light is mounted to the mast head with a tube. The light is then mounted to the top.

Tube properly mounted.
Tapping holes into the mast head.
  • Drill two holes through the anchor light tube at locations that will allow it to be secured to the mast head.
  • Drill two corresponding holes on the mast head.
  • Using the tapping tool, cut threads in the holes.
  • Screw the anchor light tube to the mast head.